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Abstract

The world of blockchain has transformed from a single-
chain approach to an omnichain, where a set of blockchains
can interact together. It is vital that any omnichain par-
ticipant can freely transfer assets between any pair of
blockchains within the omnichain in a secure and reliable
manner. At the time of this writing, there are more than a
dozen bridges that transfer approximately $5 billion worth
of assets monthly on average. However, the current evolu-
tion of bridges poses significant risks to Decentralized Fi-
nance (DeFi), introduces fragmentation into the market, or
creates limitations in one way or another.

In this paper, we propose DOULP: Deep Omnichain
Unified Liquidity Protocol, which aims to create a more ef-
ficient and frictionless omnichain market. Unlike other pro-
tocols, it does not rely on wrapped or intermediate tokens
that are susceptible to liquidity fragmentation and hacks.
With DOULP, liquidity is equally accessible to all con-
nected chains without any restrictions. Moreover, the proto-
col allows for seamless expansion to new chains without the
need for additional liquidity. The protocol was purposefully
designed with the users and liquidity providers in mind, pri-
oritizing their needs and convenience, but not sacrificing the
security of the protocol. To ensure secure and reliable mes-
sage transfer, DOULP incorporates the OMP: Omnichain
Messaging Protocol, which facilitates seamless omnichain
communication.

1. Introduction
In the past several years the rise of new blockchains was

staggering. Blockchain architects invented better ways to
provide security, proposed solutions that led to faster and
cheaper transactions, and whole ecosystem started to slowly
embrace less tech-savvy users. However, apart from a few
exceptions, the majority of blockchains tend to overlook the
broader blockchain ecosystem. This behavior is primarily
influenced by the deterministic nature of the blockchain and
its native isolation.

Due to the increasing number of well established
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Figure 1. Comparison of pool liquidity between the ∆ algorithm
and proposed DOULP algorithm (see section 5): DOULP intro-
duces a genuine unified liquidity property (section 3.2) that allows
for the sharing of liquidity in the destination pool for all incoming
asset transfers from all connected source pools.

blockchains, many users did not want to limit the use of
their assets to a single chain, and they sought for a way to
transfer their assets from one blockchain to another. To-
gether with the growth in number of blockchains, various
cross-chain asset bridges started to appear that seemingly
offered a solution to the cross-chain asset transfer demand.

At present day, there are more than a dozen of bridges,
each trying to solve a different cross-chain bridge subprob-
lem. However, as this field is still evolving, every cross-
chain asset bridge comes with its own set of issues.

Before embarking on the design of a new cross-chain as-
set bridge, we sought to answer the question of what qual-
ities an excellent cross-chain bridge should possess. Our
findings yielded the following criteria: security, speed, af-
fordability, scalability, and user-friendliness. We cross-
examined available solutions (details in section 2) and dis-
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tilled six key deficiencies in cross-chain asset bridges, in-
cluding (1) the use of wrapped tokens, (2) intermediate to-
kens, (3) sparse cross-chain connections, (4) limited market
and capital efficiency, (5) poor user-friendliness, and (6) in-
sufficient security measures.

In this work we propose DOULP: Deep Omnichain Uni-
fied Liquidity Protocol that addresses the first five key defi-
ciencies of cross-chain asset bridges. DOULP, being an om-
nichain asset bridge, does not utilize wrapped or intermedi-
ate tokens. It allows for a denser cross-chain connectivity
without need for increasing the amount of liquidity. This is
achieved using genuine unified liquidity that is shared with
every connected source chain without any limitations. Ad-
ditionally, it enables a greater liquidity utilization by remov-
ing the lower bound of pool liquidity, making them essen-
tially deeper. DOULP does not pose restrictions on what
market participants are allowed to do and when. It is per-
fectly possible to transfer all liquidity from one pool to the
another across blockchains without user penalization. Liq-
uidity providers (LP) benefit from this approach as well, be-
cause they can theoretically collect more fees in the process.

In the second part of this paper, we introduce OMP:
Omnichain Messaging Protocol, which aims to address
the final key deficiency: insufficient security measures.
OMP utilizes a two-layer message validation system to en-
hance security measures for delivering cross-chain mes-
sages, thereby mitigating potential attacks that attempt to
breach the security of the communication protocol.

The rest of the paper is composed as follows: Techni-
cal details of cross-chain asset bridge competitors are de-
scribed in section 2. Section 3 introduces DOULP: Deep
Omnichain Unified Liquidity Protocol and explains its ad-
vantages over previous approaches. Section 4 provides sev-
eral detailed examples illustrating the process of asset trans-
fer. The communication protocol, OMP: Omnichain Mes-
saging Protocol, which powers DOULP-based bridges, is
outlined in section 5. Finally, in section 6, we examine pre-
vious bridge attacks and evaluate the impact of the attack
vectors used on DOULP-based bridges.

2. Background
This section explains the concept of cross-chain asset

bridges, their categorization, and highlights the limitations
of current bridge implementations based on the six key de-
ficiencies identified in cross-chain asset bridges, as listed in
section 1.

A cross-chain asset bridge is defined as a technology that
connects different blockchain networks, allowing the trans-
fer of digital assets between them. It ensures compatibil-
ity and interoperability, enabling assets to move seamlessly
from one blockchain to another. By bridging the gap be-
tween disparate blockchains, cross-chain asset bridges en-
hance the overall liquidity and accessibility of digital assets

across various blockchain ecosystems. Because of the mul-
titude of diverse blockchains and the isolation of blockchain
networks from the rest of the ecosystem, various bridges op-
timize for different sets of outcomes.

2.1. Trusted and Trustless Bridges

Regardless of the internal objectives of a bridge, there is
one characteristic that can be used to compare all bridges:
the level of trust associated with each of them. Blockchain
bridges can be assessed on a scale ranging from the trusted
to the trustless level.

Trusted bridges refer to blockchain bridges that rely on
a centralized authority or intermediary to facilitate and val-
idate transactions between different blockchain networks,
introducing a level of trust in the bridge operation.

Trustless bridges are blockchain bridges that operate in
a decentralized manner, utilizing smart contracts or crypto-
graphic protocols to enable direct and secure asset transfers
between different blockchain networks without the need for
a centralized authority.

The design of the DOULP-based cross-chain asset
bridge (section 3) that is proposed in this paper is consid-
ered a trustless bridge. This is achieved through decentral-
ized collaboration between the Oracle and Relayer, as well
as the on-chain proof and multisig verification provided by
the Omnichain Messaging Protocol, which is discussed in
section 5.

2.2. Cross-chain Asset Bridges

In this subsection, we delve into the largest groups of
cross-chain asset bridges and explore different architec-
tures, protocols, and mechanisms that enable seamless asset
transfers.

Early type of asset bridges, some of which are some
of the most popular ones [14, 24] until today, are based
on wrapped token. Wrapped tokens are created through
mint/burn bridge, allow for 100 % liquidity utilization and
do not require LPs to function. Their properties are attrac-
tive, however, they come with a security risk and cause mar-
ket fragmentation. Every wrapped token is at imminent risk
of losing its value when bridge infrastructure is hacked, or
when the source chain is simply disconnected. Wrapped to-
kens make market more fragmented, and therefore less effi-
cient, because the same token transferred through wrapped
token bridges results in different type of token on destina-
tion chain.

Other types of asset bridges [25] use an intermediate to-
ken that enable a cross-chain asset exchange between arbi-
trary types of tokens. Such bridges require two extra steps
in the process of exchange through pools backed by the in-
termediate token. In addition to the risks associated with the
value fluctuations of intermediate tokens, such bridge solu-
tions are more complex and can result in unfulfilled trans-
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fers on the destination chain due to significant slippage.
The large portion of the cross-chain asset bridge market

has recently been captured by the native L1↔L2 bridges [2,
3, 9, 12, 13, 15, 23] that connect Ethereum with their scaling
solutions. The highest priority for such bridges is a security,
but their focus on increasing number of supported tokens,
building a denser connection network and user-friendliness
lacks behind.

There are other cross-chain bridge solutions available
in the market, but they have not gained significant market
share according to DeFiLlama bridge leaderboard [5], and
do not provide substantial advancements compared to pre-
viously described cross-chain asset bridges. Therefore, we
have chosen not to delve into them in this discussion.

The next section focuses on the Stargate bridge, which
has spearheaded the emergence of a new type of blockchain
bridges that exchange a native assets across chains.

2.3. Stargate

Stargate [18] has emerged as a colossal asset bridge with
the highest asset volume, surpassing other bridges by a sig-
nificant margin. It employs the omnichain communication
protocol LayerZero [27] and the ∆Bridge [26] for facili-
tating the exchange of native tokens across interconnected
chains. Native tokens are issued by the same entity on both
ends of the bridge connection. Although they may not be
strictly fungible, they can be considered as such, and impor-
tantly, they do not encounter the same problems as wrapped
tokens. Notable examples of native tokens include stable-
coins such as USDC and USDT.

The rules utilized by the ∆Bridge to transfer native to-
kens are determined by the ∆ algorithm. The objective of
this algorithm is to facilitate cross-chain asset transfers that
fulfill three specific properties: instant guaranteed finality,
unified liquidity, and native asset transactions. Ryan et al.
argue that instant guaranteed finality is an essential property
for any bridge, but we contend that it is merely a desirable
feature that proves useful in rare circumstances.

To achieve instant guaranteed finality, the ∆ algorithm
necessitates the presence of soft-partitioned pools. Each
soft-partitioned pool must have its own dedicated connec-
tion and cannot share liquidity with other pools that hold
the same native token (see Figure 3). This design directly
contradicts the purported achievement of unified liquidity
claimed by the ∆ algorithm. In reality, unified liquidity can
only be assumed from the perspective of liquidity providers
who can earn rewards from the pool they deposited into, re-
gardless of which chain the assets originate from. However,
users who intend to transfer native assets face limitations
imposed by the size of soft-partitioned pools, even if the
destination pool contains an ample amount of tokens.

Stargate facilitates the transfer of assets across a signif-
icant number of blockchains. However, due to the ∆ algo-

rithm, scaling becomes costly and capital inefficient. When-
ever a new chain is connected to Stargate, it necessitates
the provision of additional liquidity to meet the required
bandwidth. Alternatively, funds from neighboring soft-
partitioned pools need to be utilized, which effectively re-
duces the asset transfer limit for the connection to the pool
from which the funds were used.

Another important objective of the ∆ algorithm is to
maintain a token balance equilibrium among the connected
soft-partitioned pools. This equilibrium is achieved by ap-
plying an additional fee that increases nonlinearly based
on the amount transferred, the current balance of the soft-
partitioned pool, and the ideal balance of the pool. We
strongly advocate against penalizing users solely for utiliz-
ing the cross-chain asset bridges for their intended purpose.

Finally, the process of redeeming deposited funds from
the Stargate pool is convoluted. It only permits direct re-
demption of a limited amount. For larger amounts, one or
two cross-chain messages must be exchanged to complete
the redemption process.

The limitations of Stargate described above reflect ar-
chitectural flaws that result in low capital and market ef-
ficiency. These limitations are effectively addressed by
DOULP.

3. Deep Omnichain Unified Liquidity Protocol
In this section, we introduce DOULP: Deep Omnichain

Unified Liquidity Protocol which addresses shortcomings
of ∆Bridge (see Figure 1). DOULP enhances market ef-
ficiency within the omnichain ecosystem by facilitating
less restrictive cross-chain transfers, and enables liquidity
providers to benefit from increased capital efficiency.

The design of DOULP was guided by the first five key
deficiencies (outlined in section 1) that we identified dur-
ing our research of cross-chain asset bridges. DOULP does
not directly aim to enhance the security, however, due to its
simplicity, it helps mitigate a potential set of attack vectors.
Security measures are addressed through the utilization of
OMP: Omnichain Messaging Protocol (see section 5). As
discussed in section 2, the utilization of wrapped and in-
termediate tokens presents notable security risks and ineffi-
ciencies. Consequently, we have made the decision to avoid
their use in our protocol.

In the following subsections, we will describe how
DOULP works and detail the benefits derived from its
design, directly addressing the issues prevalent in cross-
chain asset bridges, including sparse cross-chain connec-
tions, limited market and capital efficiencies, and poor user-
friendliness.

3.1. Protocol Design

DOULP is a cross-chain asset bridge that enables trans-
fer of native tokens. The main component of the proto-
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col is a single-sided asset pool, which is connected to an-
other single-sided pools through a unidirectional connec-
tion. Pool can be designated as either a source or a des-
tination based on the direction of asset transfer. In order
to allow transfer between two pools in both directions, two
unidirectional connections must be created. Once the con-
nection is established, it is possible to transfer up to the
available liquidity amount on the destination chain, if de-
sired.

Destination pools must have a sufficient balance, which
can be added by either liquidity providers or users who have
transferred native assets in the reverse direction. Upon de-
positing funds, liquidity providers receive redeemable LP
tokens.

The process of transferring native tokens from the source
chain to the destination chain is illustrated in Figure 2. It is
divided into two steps: depositing tokens into the pool on
the source chain (lines 2 - 3) and receiving an equal amount
of tokens on the destination chain (lines 6 - 14).

When tokens are deposited into the source pool psrc, the
pool balance bsrc is increased by the deposited amount t
(line 2), and a message containing information about the
destination address and the deposited amount is sent to the
destination pool pdst (line 3).

On the destination chain, a message is received contain-
ing the transferred asset amount t and the destination ad-
dress addrdst, which is then redirected to the destination
pool pdst (line 6). If the amount of the transferred asset
is less than or equal to the balance bdst of the destination
pool, t tokens from the destination pool pdst are trans-
ferred to the destination address addrdst, and the balance
of the destination pool is adjusted accordingly (lines 7 - 9).
If the destination pool balance bdst is insufficient (lines 10 -
13), only the available amount of tokens bdst is transferred
to the destination address (line 11). The remaining amount
is converted into LP tokens, which can be redeemed for an
equivalent amount of tokens from either the destination pool
pdst or any connected source pool psrc. LP tokens are
transferred to the destination address addrdst (line 12).

The protocol design has several notable implications, in-
cluding genuine unified liquidity, dense cross-chain connec-
tivity, and probabilistic finality, which position DOULP as a
superior solution for cross-chain asset bridging. In the fol-
lowing subsections, we will discuss these design implica-
tions and their significance in the context of bridging assets
across different chains.

3.2. Genuine Unified Liquidity

The protocol design results in the genuine unified liquid-
ity property, allowing for the sharing of liquidity with any
connected pools. This feature benefits both users and liq-
uidity providers. Users are not restricted by the size of pool
partitions, while liquidity providers receive rewards regard-

1 # source pool psrc
2 bsrc += t
3 send (addrdst, t) to pdst
4
5 # destination pool pdst
6 receive (addrdst, t) from psrc
7 if t ≤ bdst then
8 transferToken t to addrdst
9 bdst -= t

10 else
11 transferToken bdst to addrdst
12 mintLpToken t-bdst to addrdst
13 bdst = 0
14 end if

Figure 2. On-chain part of DOULP algorithm

less of the source pool from which the asset transfer orig-
inated. Unified liquidity in DOULP-based bridges funda-
mentally leads to enhanced capital efficiency.

Pool LiquidityCross-Chain Connection

Chain X

Chain Y

Chain Z

∆ algorithm DOULP algorithm

Figure 3. Comparison between the ∆ algorithm and the proposed
DOULP algorithm when a new connection is created between ex-
isting pools on chains that have not been connected yet. The dotted
line in the figure represents a new connection that is being created
between the pool on chain X and chain Z. The initial state of the
pools before the creation of a new connection can be seen in Fig-
ure 1. The ∆ algorithm either requires adding new liquidity (as
exemplified in the figure on chain X with green liquidity) or taking
liquidity from other existing pools (as displayed with green liquid-
ity on chain Z). The DOULP algorithm does not require adding
or taking over other pools’ liquidity, and the connection between
existing pools can be created by simply creating a new two unidi-
rectional connections.
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3.3. Dense Cross-chain Connectivity

Cross-chain asset bridges that provide dense cross-chain
connectivity are regarded as more user-friendly since they
eliminate the need for users to conduct research each time
they transfer their assets to another chain. Scaling a bridge
solution to new chains is a challenging task that directly
impacts the extent to which dense cross-chain connections
can be established.

DOULP’s distinctive design, leveraging genuine unified
liquidity (section 3.2), enables significant potential for scal-
ing. When establishing a new connection between exist-
ing pools, we can simply create two opposite unidirectional
connections between the pools, without the need to add any
additional liquidity to either pool (see Figure 3). If we want
to create a pool on a new chain and connect it to an exist-
ing pool on another chain, additional liquidity only needs
to be provided to the new pool. This demonstrates that the
increased capital efficiency resulting from genuine unified
liquidity enables the realization of dense cross-chain con-
nectivity.

3.4. Optimistic Finality

Cross-chain asset transfers utilizing the DOULP algo-
rithm operate based on an optimistic finality approach. The
on-chain source pool does not verify the availability of suf-
ficient liquidity on the destination chain, which can result
in the transfer partially being made in LP tokens instead.
Nonetheless, thanks to genuine unified liquidity, the proba-
bility of encountering insufficient liquidity is relatively low.

The possibility of insufficient liquidity on the destination
chain can be further mitigated by predicting the amount of
liquidity on the destination chain at the time of token release
on the destination chain.

3.5. Discussion

The details of the protocol design, as described in sec-
tion 3.1 and demonstrated in Figure 2, are sufficient for on-
chain implementation. In this section, we will delve into
rare edge cases of protocol behavior and offer recommen-
dations on how to mitigate them even further.

DOULP operates based on the concept of optimistic fi-
nality (section 3.4), assuming the presence of sufficient liq-
uidity on the destination chain. The likelihood of encoun-
tering insufficient liquidity on the destination chains is low
due to the genuine unified liquidity property of the DOULP
algorithm. However, it is beneficial for the entire ecosystem
to have sufficient liquidity that enables uninterrupted cross-
chain asset transfers. We recommend setting a constant fee,
proportional to the amount transferred, which we refer to
as the incentive fee. This fee is charged for every cross-
chain asset transfer and is deducted on the destination chain,
then added to the incentive pool. When users transfer assets
in the opposite direction or LPs deposit more tokens to the

pool, they receive an incentive fee proportional to the trans-
ferred or deposited amount, respectively. We discourage
the use of dynamic fees, as seen in some other cross-chain
asset bridges (e.g., Stargate [18]). Such configurations pe-
nalize users for transferring amounts of assets beyond the
permissioned limit or for moving assets in an undesirable
direction.

Because DOULP is an open and unrestricted asset trans-
fer protocol, it is technically possible to drain a destination
pool without incurring any penalties, except for transac-
tion and incentive fees. When this scenario occurs and the
bridge is drained or close to being drained, there is a higher
likelihood that some of the users’ asset transfers will result
in partial or full LP token payout on the destination chain.
It is reasonable to assume that such situations will not be
well-received, as users aim to transfer native assets from
the source chain to the destination chain and receive the full
expected amount of tokens on the destination side, without
any LP tokens. The solution to this problem is straightfor-
ward. The bridge operator has access to information about
all bridges, pools, balances, network congestion, pool drain
speed, and other relevant data. This information can be uti-
lized to train a predictive model that estimates the probabil-
ity of a transfer not being executed 100 % in native assets.
Users can utilize this information when interacting with the
bridge frontend to make an informed decision on whether
to proceed with the transfer or not. Additionally, the as-
set transfer probability API can be made accessible to third-
party services that wish to integrate with the existing bridge.

We want to stress that under no circumstances does the
user lose money when the pool is drained or when the trans-
fer is not performed using native assets only. Importantly,
such cases are rare and become even more infrequent with
increased pool liquidity.

4. DOULP Examples
DOULP is very simple but powerful protocol for cross-

chain asset transfers. In this section we will go step by step
through three examples (Figure 4) of transferring assets be-
tween three different chains (X, Y and Z). To maintain sim-
plicity in this example, we have chosen to assume zero pro-
tocol and gas fees. As a result, the value of the transferred
amount remains unchanged.

The initial state of pools on all chains is the same. Each
chain has liquidity providers who deposited 100 tokens, re-
sulting in the pool issuing 100 LP tokens, and the balance
of each pool being 100 tokens.

In the first cross-chain transfer, the user intends to send
40 tokens from chain X to chain Y. The user deposits 40
tokens into the pool on chain X, resulting in an increase in
the pool’s balance from 100 to 140 tokens. On chain Y,
40 tokens are released from the pool to the user, and the
balance is updated to 60 tokens.
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Transfer 30 from Y to Z

Chain X
lpx: 100
 bx: 100

Chain Y
lpy: 100
 by: 100

Chain Z
lpz: 100
 bz: 100

Initial state

Transfer 40 from X to Y

Chain X
lpx: 100
 bx: 140

Chain Y
lpy: 100
 by: 100

Chain Z
lpz: 100
 bz: 100

Chain X
lpx: 100
 bx: 100

Chain Y
lpy: 100
 by: 60

Chain Z
lpz: 100
 bz: 100

t = 40 t = 40

Chain X
lpx: 100
 bx: 140

Chain Y
lpy: 100
 by: 90

Chain Z
lpz: 100
 bz: 100

Chain X
lpx: 100
 bx: 140

Chain Y
lpy: 100
 by: 90

Chain Z
lpz: 100
 bz: 70

t = 30 t = 30

Transfer 20 from Y to X

Chain X
lpx: 100
 bx: 140

Chain Y
lpy: 100
 by: 110

Chain Z
lpz: 100
 bz: 70

Chain X
lpx: 100
 bx: 120

Chain Y
lpy: 100
 by: 110

Chain Z
lpz: 100
 bz: 70

t = 20

Step 1

t = 20

Step 2

Step 1 Step 2

Step 1 Step 2

Resolved State

Chain X
lpx: 100
 bx: 120

Chain Y
lpy: 100
 by: 110

Chain Z
lpz: 100
 bz: 70

Figure 4. Examples of three consecutive transfers between pools on different chains. A detailed description of every step for each asset
transfer is described in section 4.

In the second example, the user deposits 30 tokens into
the pool on chain Y, causing the balance value to increase
from 60 to 90 tokens. On chain Z, the user receives 30 to-
kens from the pool, resulting in a decrease in the pool’s bal-
ance from 100 to 70 tokens.

The last example illustrates a user who wishes to trans-
fer 20 tokens from chain Y to chain X. The user begins by
depositing 20 tokens into the pool on chain Y, resulting in
an increase in the pool’s balance from 90 to 110 tokens. On

chain X, the pool’s balance is decreased from 140 to 120
tokens, and 20 tokens are transferred to the user.

None of the transfers affected the values of LP tokens;
however, the pool balances were updated in both the source
and destination pools. The final balances of the pools on
chain X, Y, and Z are 120, 110, and 70, respectively.
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5. Omnichain Messaging Protocol
Every cross-chain application requires a secure commu-

nication layer between blockchains to ensure safe and se-
cure message transfers. The security of cross-chain as-
set bridges is particularly crucial, as their pools hold large
amounts of tokens that attract hackers. This is evidenced in
section 6, where we highlight the prominence of cross-chain
asset bridge attacks within the DeFi ecosystem.

In this section, we introduce the OMP: Omnichain Mes-
saging Protocol (Figure 5), which enables highly secure
transmission of messages between blockchains and di-
rectly addresses the last key deficiency of cross-chain asset
bridges: insufficient security measures.

5.1. Components

OMP is composed of on-chain and off-chain components
(OMP Endpoint, OMP Oracle, and OMP Relayer) that col-
laborate in a decentralized and trustless manner to securely
deliver messages from applications on the source chain to
applications on the destination chain.

The OMP Endpoint is a set of on-chain smart contracts
deployed on both the source and destination chains, en-
abling the sending and receiving of messages, respectively.
The Endpoint accepts message transfer requests, validates
them, creates packets, and emits them to initiate cross-chain
message transfers. On the receiving end of the communica-
tion channel, the endpoint receives the packets, validates
them, and executes application functions that are encoded
within them.

The OMP Oracle is an off-chain component consist-
ing of a set of independent trustworthy parties that collabo-
rate together to generate proof from the emitted packet, and
which must be confirmed by more than 2/3 of the oracles.
Once the proof is confirmed by the quorum, the oracles al-
low external parties to access the original packet enriched
with the proof and multisig of the proof hash.

The OMP Relayer is an off-chain component that can
be controlled by any entity. Its purpose is to relay data
provided by the Oracle to the Endpoint on the destination
chain. Prior to submitting the data to the destination end-
point, the Relayer appends a proof component to the packet.
This proof component is utilized during the inbound valida-
tion process on the destination chain.

5.2. Protocol Design

The design of OMP draws inspiration from Lay-
erZero [27] and Wormhole’s Guardian Network [21]. It
uses fewer transactions than LayerZero and combines the
security approaches of both messaging protocols.

LayerZero’s cryptographic security is based on the con-
cept of ultra-light node, which verifies the correctness of
receipt proofs within a single block without requiring the

context of previous blocks. It is an efficient and relatively
inexpensive way to prove that a certain event has occurred.
However, as described in section 6, four out of eleven bridge
attacks were caused by cryptographic vulnerabilities at the
code level, which could potentially happen to ultra-light
node as well. To mitigate the possibility of such attacks,
we have decided to include an additional layer of security,
inspired by Wormhole’s Guardian Network. Proofs gener-
ated from the header of a block or transaction will be addi-
tionally signed by OMP Oracles, creating a multisig. This
multisig will be verified by both the OMP Relayer and the
OMP Endpoint, along with the proof.

OMP requires a certain level of modularity to accom-
modate the variety of different chains and the specific pro-
cesses involved in proof generation and verification on each
chain. This modularity is essential for both the on-chain
(OMP Endpoint) and off-chain (OMP Oracle) validation li-
braries.

Figure 5 illustrates the steps of sending and delivering a
single message from application on chain X to application
on chain Y. For each described step, there is a circled num-
ber in the figure to assist in understanding the protocol’s
process.

Step 1: The cross-chain message communication sce-
nario begins with a user submitting a transaction to an on-
chain application that is integrated with the OMP Endpoint.

Step 2: The transaction initiated in step 1 generates an
internal transaction within the OMP Endpoint, which con-
structs a header containing the destination application and
destination chain information.

Step 3: The information from the header is validated
against the registered set of destination chains and destina-
tion applications.

Step 4: Once the header validation is completed, the full
packet (header, payload) is composed and emitted as an
event from the OMP Endpoint.

Step 5: A set of trustworthy permissioned OMP Oracles
listens to the event emitted in step 4 and waits for the block
or transaction that includes the event to be confirmed. Once
the event is immutably stored on the chain, the OMP Ora-
cles generate a proof (e.g., receipt proof for EVM chains)
and share it with each other. To validate the proof, at least
2/3 of the OMP Oracles must generate the same proof and
sign it with their private keys. Both the proof and multisig
are attached to the original message (header, payload) re-
ceived through the event. The OMP Relayer can access the
newly generated messages in the next step.

Steps 6-7: The OMP Relayer retrieves the message
(header, payload, proof, multisig) from the OMP Oracles
and requests a proof component (e.g., receipt root for EVM
chains) from the source chain X. The OMP Relayer utilizes
the proof component to verify the proof generated by the
OMP Oracles. Once the correctness of the proof is con-
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Figure 5. Communication flow between an application on chain X and an application on chain Y through OMP: Omnichain Messaging
Protocol. For more details, see section 5.

firmed, the proof component is attached to the message
from the OMP Oracles.

Step 8: The OMP Relayer is responsible for off-chain
proof verification (step 7) and for submitting the message
(header, payload, proof, multisig, proof component) to the
destination OMP Endpoint on chain Y. The OMP Relayer
can be any entity that aims to finalize the transaction by sub-
mitting it to the destination chain or a trusted permissioned
entity that mitigates the risk of submitting a malicious mes-
sage generated by a corrupted set of OMP Oracles.

Step 9: The transaction submitted by the OMP Relayer
in step 8 triggers a series of internal transactions, starting
with the inbound message validation. In this step, we verify
that a minimum of 2/3 of active oracles have submitted the
same proof and validate the correctness of the proof using
the proof component.

Step 10-12: Once the proof is confirmed to be valid, the
OMP Endpoint initiates an external call, as defined in the
message payload, to the destination application specified in
the header. This finalizes the cross-chain message transfer
from chain X to chain Y.

6. Security
Cross-chain asset bridges are frequent targets of hackers

due to the large amounts of tokens stored in its pools. Ac-
cording to Rekt [16], four out of top five largest attacks (ta-
ble 1) in history of DeFi targeted cross-chain asset bridges.

The utilization of wrapped tokens in bridges amplifies
the impact of attacks by enabling the creation of an unlim-

ited quantity of tokens on the destination side, which could
subsequently be transferred back to the source chain to ac-
quire native tokens.

Besides the vulnerabilities inherent in wrapped token
bridges, there have been numerous successful attacks on
various cross-chain asset bridges. Ronin Network [17],
Poly Network [11], and Harmony Bridge [6] were all com-
promised by attackers who illicitly obtained access to the
private keys used for multisig protection in their respec-
tive cross-chain protocols. Cryptographic vulnerabilities
caused by code-level bugs or improper use of cryptogra-
phy libraries affected BNB Bridge [4], Wormhole [22], and
Anyswap [1]. The first Poly Network [10] attack exploited
a peculiar method of generating a function selector, which
enabled making arbitrary external calls on behalf of the con-
tract. Nomad Bridge [8] exposed itself to an attack due to
an unfortunate incomplete update of the bridge, which al-
lowed the bypassing of validation for arbitrary messages on
the destination chain. Interestingly, THORChain [19, 20],
which has been hacked twice already, does not fit into any
of the previously mentioned attack vectors. In both cases,
the attacker exploited a bug in the code. Multichain [7], pre-
viously known as Anyswap, had already been hacked [1]
before the writing of this paper. Another attack occurred
during the writing process, and a complete post-mortem re-
port has not yet been released.

It is important to stress that many of the above-
mentioned bridges have not undergone official audits or
their audit reports are not available. Auditing DeFi proto-
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Rank Name Cause $M
1 Ronin Network [17] phishing, 5/9 multisig 624
2 Poly Network [10] contract vulnerability 611
3 BNB Bridge [4] cryptographic vulnerability 586
5 Wormhole [22] cryptographic vulnerability 326
8 Nomad Bridge [8] incomplete bridge update 190

14 Multichain [7] under investigation 126.3
18 Harmony Bridge [6] 2/5 multisig 100
75 THORChain [19] lack of proper multi-event handling 10
78 Anyswap [1] cryptographic vulnerability 8
94 THORChain [20] off-chain code logic 5
97 Poly Network [11] 3/4 multisig 4.4

Table 1. Four of top five Rekt’s leaderboard [16] entries are cross-chain asset bridge attacks.

cols is an essential step in the development phase and should
never be considered an afterthought.

7. Conclusion
In this paper, we present two innovative cross-chain pro-

tocols; DOULP: Deep Omnichain Unified Liquidity Proto-
col and OMP: Omnichain Messaging Protocol. DOULP is
a cross-chain asset protocol designed to provide deep uni-
fied liquidity across chains, while OMP ensures secure and
trustless cross-chain messaging. The design of DOULP and
OMP was motivated by the need to address six key defi-
ciencies that we identified in the current state of cross-chain
asset bridges: including the use of wrapped tokens, interme-
diate tokens, sparse cross-chain connections, limited mar-
ket and capital efficiency, poor user-friendliness, and insuf-
ficient security measures.

The first two deficiencies are resolved by entirely ex-
cluding the integration of wrapped and intermediate tokens
in the protocol design. The next deficiency, sparse cross-
chain connectivity, is overcome by the genuine unified liq-
uidity property of DOULP, which enables the reuse of exist-
ing pools when establishing new cross-chain connections.
The limitation in market and capital efficiency is resolved
through a combination of the simplicity of DOULP’s algo-
rithm, which allows for unrestricted transfer of assets with-
out penalties, and the genuine unified liquidity that enables
the connection between any pools without limiting the re-
sources of the pool. User friendliness is improved by re-
moving limitations on asset transfer direction and amount,
as well as enabling the redemption of LP tokens in a single
transaction. Insufficient security measures are addressed by
the OMP cross-chain messaging protocol, which employs
a two-layer security protection approach both off-chain and
on-chain.

Bridges constructed using the DOULP and OMP pro-
tocols embody all the essential properties necessary for a
safe and efficient cross-chain asset bridge. We consider

these protocols to be impactful market catalysts and firmly
believe in their tremendous potential to enhance the entire
cross-chain asset ecosystem.

Disclaimer
This paper is for general information purposes only. It

does not constitute investment advice or a recommendation
or solicitation to buy or sell any investment and should not
be used in the evaluation of the merits of making any invest-
ment decision. It should not be relied upon for accounting,
legal or tax advice or investment recommendations. The
opinions reflected herein are subject to change without be-
ing updated.
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